

LA-UR-21-28021

Approved for public release; distribution is unlimited.

Title: Offloading Calculations to Computational Storage Devices: Spark and

HDFS

Author(s): Goldstein, Justin James

Hammock, Charles Warren

Liu, Ralph

Janz, Jacob Benjamin Cunningham, Clyburn Rimerman, Mitchell

Intended for: Report

Issued: 2021-08-10

GEORGETOWN UNIVERSITY

Offloading Calculations to Computational Storage Devices: Spark and HDFS

Clyburn Cunningham IV, Justin Goldstein, Warren Hammock (USG), Jacob Janz, Ralph Liu, Mitch Rimerman

Mentors: Shane Goff, Steve Poole, Kevin Bryant (USG)

Introducing Computational Storage Devices (CSDs)

Computational Storage → Near-data processing

CSD → Runs software where data resides

Potential performance improvement

Introducing Hadoop and Spark

- Apache Hadoop → Used to store and process large datasets
 - Hadoop Distributed File System (HDFS)
 - Ecosystem includes many useful tools/applications
- Apache Spark → Distributed processing system used for big data
 - Enhances processing performance

Experimental Objective and Design

- Objective → Evaluate the capabilities of multiple CSDs (provided by NDG Systems) using Hadoop Filesystem and Apache Spark
 - Use native Spark libraries, such as SparkSQL and DataFrames, to perform matrix operations on datasets
- Independent Variables
 - \circ # of CSDs \to 0, 1, 2, 4, or 6
 - Size of dataset \rightarrow 1 GB, 5 GB, 10 GB
 - Type of dataset → One large file with all of the data, 10 files, 100 files
- Dependent Variables
 - Job time
 - Execution time
- Constants
 - Operations on dataset

Experimental Design Continued

- Ran the experiment 3 times
- Used Trinity sensor data
- **Operations**
 - Count lines
 - Column operations
 - Sum and average
 - Multiplication and modular arithmetic
 - Mean and standard deviation
 - Compute gram matrix and determinant
 - Measure entropy

Experiment Results

File Size

 Linear Scaling with increased file size holding number of CSDs constant

Number of Files

- Increased performance with more CSD's
- Similar observations for different file amounts
- Lesser improvement for more nodes with large amount of files

Computation Time for One 10GB File

Computation Time for 100 Files that Sum to 10GB

Comparison to Host

Much faster on Host

 Assuming uniform scaling, achieving host performance would not be possible with any amount of CSDs

Conclusion

We Observed That

- Ineffective at offloading our operations
- Time v. Size scales linearly
- Time v. Cores scales inversely
- File size v. quantity matters

Important Observations

Future Work

Scalable, but CSDs are not fast

CSDs are unstable

- Drives break often
- If one breaks, all must halt
 - Erase and reinstall Linux

